If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-20=0
a = 1; b = 4; c = -20;
Δ = b2-4ac
Δ = 42-4·1·(-20)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{6}}{2*1}=\frac{-4-4\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{6}}{2*1}=\frac{-4+4\sqrt{6}}{2} $
| 17r+r2=52 | | m-9/5=3 | | 2/5x+2=-8 | | -6a+4=16 | | t/7+13=25 | | 1/5g+8=-1 | | 2*0+y=17 | | -12t=20 | | 250/1000000*x^2+x-5000=0 | | 3h-h=13.67 | | -2(x-2)-4x=3(x+1)+20 | | 2(x+3)^2=24 | | 3x=1=16 | | 7c-8c=22 | | (x^2-12x+36)/7x^2+14=0 | | 3h-h=41/3 | | -x+2*0=-13 | | -(1-5x)=4(2+x) | | 250*x^2+x-5000=0 | | -x+2*0=-15 | | 22=7c-8c | | 7x=2(2+3x) | | 7x=2(2=3x) | | (x^2)*13=4x | | 2/3a+1/2a=21 | | 2y+y+5y=18 | | .5x+15=25+.25x | | Y=8x-(1+4x) | | 2y+y+5y=24 | | -x+13x=-60 | | 3x+1/20=2x+7/3 | | 3x+1/20=2x+7/ |